广西热线 - 广西地区最专业的新闻资讯网站!
当前位置: 主页 > 社会新闻 > 科技新闻 《科学大家》:神奇又难懂的量子密码学(2)

《科学大家》:神奇又难懂的量子密码学(2)

发布时间: 2020-07-17 16:04:51 来源: 未知 作者: 佚名
量子密码 如果你将这个晶体入下图放置,垂直偏振和水平偏振的光子可以被完全区分开。 如果你将光子的偏振方向旋转45度角,再将晶体也旋转45度角。那

量子密码

如果你将这个晶体入下图放置,垂直偏振和水平偏振的光子可以被完全区分开。

《科学大家》:神奇又难懂的量子密码学

如果你将光子的偏振方向旋转45度角,再将晶体也旋转45度角。那么你可以完全区分出这两种偏振方向的光子。

(译者注:这里指将水平偏振和垂直偏振光子旋转45度后得到的45度偏振和135度偏振光子)

《科学大家》:神奇又难懂的量子密码学

光子是一个两维系统,这个两维系统是量子希尔伯特空间中的系统。量子的空间,就叫做希尔伯特空间。水平偏振和垂直偏振可以被完全区分出来。45度偏振和135度偏振态也可以被完全区分出来。但是没有办法可以将四种偏振方向的光子完全区分出来。

威斯纳在他1968年的手稿中就提议使用这个原理。(译者注:威斯纳用这个原理制作quantum money,即量子货币)

事实上这仅仅是在信息理论被建立二十年后。银行制作了这些量子货币。你以为你只需要一个能够完全反射光子的箱子。然而如果你制作了一个能够完全反射光子的箱子。这些光子会在一微秒甚至更短的时间内消失。银行制作了这些量子货币,并且银行知道量子货币所包含的偏振光子的顺序。如果有人想复制这些量子货币,他的做法会破坏掉其中一些光子的偏振态。

《科学大家》:神奇又难懂的量子密码学

量子货币

吉尔和我将这个想法带到了量子密码学的第一个验证实验里,实现了量子通信,通信距离30厘米。现在,墨子卫星的成码率都比这通信距离只有三十厘米的装置的成码率高。(译者注:一般通信距离增加后,成码率会降低。)

总之,这就是量子密码了。

量子纠缠的产生

量子力学最神奇的地方在于纠缠。纠缠是在相互作用的过程中自然而然发生的。纠缠的产生是量子叠加原理的结果。

任何的量子数据处理过程,可以看成是对单个量子比特上进行操作或者是两个量子比特之间的相互作用。唯一能在单个量子比特上进行的操作是旋转它的偏振方向。我们对单个光子的操控可以旋转光子。那么双量子比特操作又是什么意思呢?我们将会用两个可完全区分的量子态来代表量子比特。

我们将用垂直偏振的光子来代表|0>态,用水平偏振的光子来代表|1>态。下图就是量子版本的异或门,在异或门里,第一个比特的值将会决定第二个比特是维持不变还是翻转成与原先的偏振方向相垂直的偏振态。换句话说,如果第一个比特是一个|1>态,第二个比特从|0>态变成了|1>态;如果第一个比特是一个|0>态,第二个比特将维持不变。而且由于这是一个量子计算单元,如果输入端是是叠加态,那么输出端也会是叠加态。

《科学大家》:神奇又难懂的量子密码学

这些符号将会显示出45度角方向偏振,如果我们将这个叠加态放进输入端,那么输出端出来的也会是叠加态。最终我们得到了这样一个四维空间中的量子态。这个量子态处在两种状态之间,即两个光子都是水平偏振的或者两个光子都是垂直偏振的,这就是一个纠缠态。

当我说纠缠态的时候,我指的是跟你们现在所想的任意一种量子态都很不一样的一种量子态。如果我有两个光子,这个光子一定会在某一个确定的状态中,另一个光子也一定会在某一个确定的状态中。两个光子在一起的态,唯一能想到的也是一个光子在某一个确定的状态中,另一个光子也一定在某一个确定的状态中。但是对这些纠缠光子来说,情况并不是这样的。

《科学大家》:神奇又难懂的量子密码学

这个介于两个光子都是水平偏振和都是垂直偏振之间的状态,和这样的一个状态相同,即介于两个光子都是向左偏转和都是向右偏转之间的状态。这两个光子处在这样的量子态中,它们的偏振方向一直相同,即使任何一个光子都没有独立的偏振状态。

《科学大家》:神奇又难懂的量子密码学

确实有一个理论,称纠缠是一夫一妻制的,即单配的。单配性的具体内容指,两个系统相互纠缠的程度越深,它们与其他系统的可能纠缠程度越低。

量子隐形传态

能用纠缠做什么呢?

现在有一个光子,但是不知道它处在什么状态。我们希望获得这个光子的偏振信息,然后再将这份信息加载到另外一个光子上,并且这两个光子从来没有彼此接近过。这看起来像是一个不可能完成的任务,这就是量子隐形传态。

因为并不知道第一个光子的偏振方向是什么,没办法在测量这个光子以得到它的信息的同时,却不对它产生任何影响。幸好可以通过纠缠来解决这个问题。直接测量光子的偏振方向,然后会得到一个可能错误的答案。

将测量得到的信息发送到一个地方, 然后制备一个复制品, 只不过这个复制品不是一个完美的复制品。错误就表示偏振方向是不对的。那应该如何解决这个问题呢?

可以利用纠缠来解决这个问题。

首先制备一对纠缠粒子,然而不打算真的去测量它。让粒子A和粒子B之间产生相互作用,对这两个粒子进行贝尔态联合测量。而且不关心其中任何一个粒子的状态,只关心他们之间的关系。既然这里有两个光子,将得到有四种可能结果的答案,换句话说,即是两比特的经典信息。

在测量过程中会破坏掉光子A的偏振态。然后将对光子A的状态一无所知。测量会产生四种可能的结果,于是将这两比特信息发送到这个接收站。然后对光子C进行操作,光子C从未接近过光子A,并且以四种不同方式中的一种来旋转它的偏振方向,结果将得到已经摧毁的那个量子态的准确的复制品。

量子隐形传态并不能像《星际迷航》中一样将人瞬间传送到遥远的星球去。但量子隐形传态是搭建量子计算机的基本要素之一。

《科学大家》:神奇又难懂的量子密码学

量子隐形传态真的是很有趣的概念。我们已故的合作者阿舍·佩雷斯,他是一个骄傲的无神论者。曾经有人问他,如果你量子隐形传态你自己,只有你的身体会被传输过去,还是灵魂也会一起被传输过去?然后他回答(调侃)说,只有你的灵魂会被隐形传输过去。

下面我要讲一个人类故事来类比量子隐形传态。

我觉得有一件事就比较像梦境一样,也就是当人们有了极其痛苦的经历的时候,比方说亲眼目睹犯罪活动的发生。他们越多回想这件事,他们的记忆就会变得越不准确。

在芝加哥发生了一起犯罪事件,爱丽丝住在芝加哥,并且目睹了这起犯罪事件。FBI想从爱丽丝那里获得关于这起犯罪事件的信息。他们知道她关于此的记忆是很脆弱的。FBI不想随便向爱丽丝提问,害怕会破坏她的记忆。并且有些问题涉及到一些FBI不想跟芝加哥警察局分享的情况,芝加哥警察局可能会问爱丽丝其他问题,从而扰乱她。所以FBI希望爱丽丝可以亲自到华盛顿来一趟,好让FBI的专家与她面谈,这些专家会问她正确的问题,并且会以正确的顺序。

很不幸的是,爱丽丝不喜欢出行。FBI 担心如果强迫爱丽丝来华盛顿的话,她会变得不合作。所以FBI打算派遣一个特工去跟爱丽丝面谈,然而问题是所有的特工都对这个案件有强烈的个人观点。他们不信任彼此单独来进行这个面谈。

最后来了两个一直很无用的特工。不过有个不同寻常的情况是,这两个特工,我叫他们莱姆斯和罗慕路斯,也就是创建罗马城的那对双胞胎的名字。他们在任何事情上都保持一致的看法,换句话说,他们是纠缠在一起的。莱姆斯说,“来吧,让我去吧,我对这个案件一无所知,所以我比你们中的任何一个都更没可能去影响她,而且我很喜欢出门”。于是FBI派遣莱姆斯去跟爱丽丝面谈。莱姆斯去了芝加哥,但是FBI告诉莱姆斯这其实是一次快速约会。

莱姆斯和爱丽丝不应该谈论任何东西,尤其是跟犯罪活动有关的。他们只需要确认他们是否喜欢彼此。不过约会进行地很糟糕,爱丽丝无法忍受他。而且感到如此紧张,以至于忘记了跟这个犯罪活动相关的所有东西。芝加哥警察局的人对爱丽丝说,“很好,你可以回家了。”然后芝加哥警方打电话给华盛顿方面,告诉他们爱丽丝和莱姆斯相处不来。如今爱丽丝的记忆已经被移植到了罗慕路斯的大脑里,只不过记忆是颠倒的。所以FBI需要向罗慕路斯提问所有本来应该问爱丽丝的问题,然后再将每个问题的答案反转。反正FBI最后就是这般得到爱丽丝的记忆的。

这就有点像量子版本的“一次一密”。

[!--empirenews.page--]

纠缠的“单配性”

下面我想讲讲量子纠缠的“单配性”,这是一个基础性的原理,而且这个原理来自于量子叠加。如果两个系统彼此最大程度地纠缠在一起,那么它们将不能与其他任何东西纠缠在一起。他们甚至不能再跟其他任何东西产生经典关联。

在社交事务方面有一句谚语,如果两个人聊得特别投机,那么第三个人进来会干扰原来的谈话。当你遇到这样的情况时,礼貌的做法是,离开并让他们单独相处。

有句英语谚语“两人成伴,三人不欢”。现在假设爱丽丝和鲍勃已经纠缠在了一起。不过假定鲍勃是那种想要更多纠缠关系的人。这时他找来了另一个朋友,这个朋友爱丽丝不认识。并且鲍勃和这个新朋友也做了之前与爱丽丝做的事情。鲍勃希望他现在可以跟这两个女朋友都纠缠在一起。然而鲍勃发现他与爱丽丝的关系已经退化了,变成仅仅只有经典相关随机了。而他与朱迪的关系也是如此。如果你现在重新来看这件事,如果鲍勃的其中一个女朋友离开了市里,鲍勃将会发现他跟另外一个女朋友的关系退化成仅仅是相关随机了。不过如果他们都一直待在原处,鲍勃将会处在完全的纠缠态中,只是并不是跟任何一个女朋友。他将会跟他们的“非正常关系”纠缠在一起。

《科学大家》:神奇又难懂的量子密码学

无处不在的量子纠缠

现在我们来看看量子随机是从哪里来的。让我们来看看这个实验。斜方向偏振的光子通过这个晶体。其中一些光子变成了水平偏振,另外的光子则变成了垂直偏振。如果我们做下面这个实验,并且我们不真的完成它。我们让这些光子变成这样的两束光,但是并不测量它们。

《科学大家》:神奇又难懂的量子密码学

事实上这些光子并不是以不同的概率进入不同的光束,它们其实是以叠加态的形式同时进入到两个光束的。这个晶体做的事情是将一束对角偏振的光子转化,转化到下面两种态的叠加态,这两种态分别是光子在一束光内是水平偏振,而在另一束光内是垂直偏振。

所以事实上,光子在这里还没有选择光束。可以通过在这里插入半波片,半波片可以将光子的偏振方向翻转,可以将水平偏振光子变成垂直偏振,垂直偏振光子变成水平偏振。垂直偏振的光子会这样通过晶体并偏转行进方向,水平偏振的光子会那样经过晶体。两束光处在纠缠态中。经过第二个晶体后,两束光又重新成为了一束光。

这里可以举一个例子,这就像是教室里会发生的吓人经历,对学生来说,这是一件十分尴尬的事情,当着全班所有人的面说自己的偏振是什么。其他人吓得他忘记了自己的偏振是什么了。

《科学大家》:神奇又难懂的量子密码学

纠缠无处不在,几乎所有的相互作用都会产生纠缠。那为什么一直到二十世纪纠缠才被发现呢?那是因为纠缠的单配性。自然界的大多数系统都跟光子不同。光子可以在空气中行进,可以飞行上百万光年的距离,偏振仍然不被破坏。如果你碰一下这个东西,它就会变成另外一个东西了。它跟你产生了相互作用,你甚至可以听到声音。

自然界的大多数系统,除了光子这样小的东西,都会跟它们周围的环境产生强烈的相互作用, 然后几乎会立刻跟周围环境纠缠起来。这就像鲍勃和他的两个女朋友们之间发生的情况。这个系统的各个部分之间曾经存在的任何纠缠关系都将会退化成相关随机性。这就是为什么一直以来,当我们想到概率的时候,我们却不曾意识到其实是纠缠在起作用。

我们身处的世界可以展现在我们面前是因为所有人都在跟光子发生相互作用。这些从我们身上反射的光子记录下了我们的位置,这就是为什么我能看到你在哪里。然后光子继续行进,并且它们之间没有相互作用。这就像在这最上面有一个未知的量子态,然后有许多的|0>态进来。每一个|0>态都去观测最上面的那个态是|0>态还是|1>态,然后跟它纠缠在一起。不过这些|0>态只能知道的是最上面的那个态是垂直偏振还是水平偏振的。但是它们无法得知是否是对角偏振的。为了获知最上面的态是否是对角偏振的,我们需要将环境中的所有光子收集起来。这就像要让班上所有的其他学生,其他学生都听到该生说过他的偏振方向是什么,然后让所有其他学生都忘记这件事。

《科学大家》:神奇又难懂的量子密码学

这样该生就可以找回自己的偏振方向了。这是由楚雷克和Blume-Kohout提出的一个理论。他们将这个称为“量子达尔文主义”。因为这个现象是指一个物理量的信息增加了,代价却是互补的物理量的信息都减少了。不过我觉得“量子群发”会是一个更好的名字。因为所有的环境复制品都来自同一个起源。

对量子纠缠的误解

人们认为量子力学很难以理解的一个原因是爱因斯坦不喜欢量子力学。爱因斯坦是二十世纪唯一一个家喻户晓的物理学家。爱因斯坦讨厌量子力学的两个方面, 第一个地方是不确定性,意味着在以同样方式制备的系统会有不一样的表现。

量子力学另外一处让爱因斯坦不喜欢的地方是量子纠缠。爱因斯坦给量子纠缠和不确定性都取了很坏的名字。他将不确定性称为“上帝玩骰子”。将量子纠缠称为“幽灵般的超距作用”。并且爱因斯坦认为量子力学违背了物理理论需要满足的一个重要因素,也就是任何一种现象或结果都必然有其原因。

但是除了爱因斯坦以外的物理学家都如此爱量子力学,因为量子力学解释了如此多在实验室里发生的奇妙现象,并且这些现象带给了我们很多发明,比方说激光与半导体。喜欢量子力学的物理学家们却又以不同的方式来解释它,并且这些方式看起来是相互矛盾的。

量子纠缠一直广泛地被几乎所有的新闻记者所误解。他们都将量子纠缠解释成是一种超距作用。当然新闻记者谈论量子纠缠的时间还不长。物理学家已经讨论了量子纠缠很长时间。

1982年,尼克·赫伯特发表了一篇文章。后来又有一个叫杰克·萨尔法季的人,想为这个想象出来的通信手段申请发明专利。已经过世的阿舍·佩雷斯,也就是我们的量子隐形传态文章的合作者之一。

不过当时审稿人肯定说过这样的话:这篇文章应该发表,因为它是错的。当然,后来楚雷克、伍特斯和迪克斯分别指出了为什么这篇文章是错的。楚雷克、伍特斯和迪克斯提出了不可克隆定理,主要讲了量子纠缠的单配性,以及量子信息是不能被复制的。事实上早在1968年,就发现了这一点,并利用了这一点。科学界发生过很多类似的事情,提出新概念的人却并不知道如何使用这些概念,他们甚至不知道这些概念是否重要。一个概念需要再被重新发现三次四次,大家才会对这个概念有所了解,知道能够运用在何处。

就在此刻,上面所说的再发现仍然在继续发生,但却是以一种不好的方式。我想大多数量子信息领域的同僚会经常收到一些人的提案,这些人想将纠缠运用到长距离通讯上,希望能实现超光速通讯。(译者注:信息的传递速度不能超过光速。这里指试图利用纠缠来实现超光速通讯的方案都是错的)这就像永动机一样,是一个永远不会实现的梦。

大家应该觉得量子纠缠很奇妙,而不是毫无意义。科学上有很多十分重要待解决的问题,一旦被解决将会引领新科学。产生矛盾的地方往往会诞生新的科学,其中一个最著名的例子就是迈克尔逊-莫雷实验。这个问题被爱因斯坦的狭义相对论解决了,狭义相对论联系了时间和空间。麦克斯韦方程式并不是不变的,它们遵从洛伦兹变换。目前最大的难题是黑洞信息问题,这也是量子力学和广义相对论交汇的地方,我们仍然不知道如何将这两个理论统一。不过有很多理由让人相信量子信息会帮上忙。

现在,我要将这些真正的科学危机跟下面这些危机做一个对比。我把这些称为 “解释的危机”。

“解释的危机”指的是这样的情况,所有人都赞同实验的结果,但是却在如何描述上意见不一致,可能最好的解决办法就是习惯它。同样的事在不断地发生,几千年前,人们发现2的平方根不是小数,当时的人们认为除了整数以外,剩下的数字都是小数,现在我们有了无理数。这些都是我们刚习惯的关于这个世界的真相。我觉得量子测量问题正在变成“陈旧的老问题”。许多人仍然一直在会议中讨论量子测量问题。

量子信息就是换了一种方式的经典信息,量子信息是经典信息的一般化。量子信息更大、更美、更有力量。经典比特就是量子比特的两个任意选择的正交态中的一个,(译者注:这句话的意思是经典比特只能取一个值,“0”或“1”。)例如垂直偏振和水平偏振的光子。任意两个能够被完全区分的态都可以叫做比特。经典导线可以准确地传导两种状态,但是会将两种状态的叠加态随机化。所以一个经典信道就是一个有窃听者存在的量子信道。任何不能被窃听的信道本质上都是量子信道。经典计算机就是每根导线都被窃听的量子计算机。

如果问量子加速是从哪里产生的?为什么量子计算机解决因式分解要快很多?我会回答他们问错问题了。计算机是量子的,只不过一旦我们知道如何轻易地搭建计算机,并且计算机的每根导线都遭到窃听,这会让一些计算变慢了。打个比方,假如我现在打算做某个计算,然后有人在监视我,这会极大地降低我的计算速度。

事实上,有一些计算可以抵抗窃听。而其他计算则会因窃听极大地降低速度。

量子计算机可以极大地加速一些对经典计算机来说很困难的计算,例如因数分解问题。你甚至不需要一个经典计算机来将这两个质数相乘,从而得到那一个数(即下图左测的长数字,是右侧两个质数的乘积)。如果你有一个安静的周末,你不需要计算机就能做这个乘法计算了。不过将左侧的这个乘积分解成右侧的两个质数,即使用最好的算法也要需要花费经典计或者几个月,甚至几年。所以解决办法就是搭建一个量子计算机,然后利用它的纠缠态。但是必须保护它不被环境窃听。

《科学大家》:神奇又难懂的量子密码学

将量子计算机与环境完全隔离是不可能的,但其实并不需要这样做。如果你可以让每一个器件都运行地接近完美,它们不需要运行地十分完美,然后你就可以运用量子纠错理论。下图是一个最简单的量子纠错代码,它可以纠正单个量子比特的错误。在这个纠错代码中,我们需要另外四个|0>量子比特。最后的结果是在五个量子比特形成的纠缠态中,如果你破坏了任何一个量子比特,破坏可以被消除,转移到这些备用量子比特上。

《科学大家》:神奇又难懂的量子密码学

经许多人努力,量子纠错理论上发展出了容错计算理论,在容错计算理论中,你需要做的是保护它的纠缠态,你处理的方式如此微秒,以至于你甚至可以承受在纠错过程中产生的错误。

《科学大家》:神奇又难懂的量子密码学

如今全世界都在努力建造量子计算机。这是IBM即将上线的量子计算机原型机,任何人都可以使用它来做运算,噪声挺大,但已经是我们现在能达到的最佳性能了。

《科学大家》:神奇又难懂的量子密码学

人们提出过许多种系统来搭建量子计算机。如果是用来通信,你当然会想使用光子。如果是用来存储,你会想用某种原子或分子,这些原子或分子处在十分隔离的环境中,要么是在真空中要么是在固体中。

于是新闻记者又在那里说,太好了,我们有了新的计算方式了。摩尔定律正在走向尽头。事实上摩尔定律九年前就在走向尽头了。还是七年之前?因为人们已经习惯了摩尔定律的放慢了。量子计算会让摩尔定律迎来新的生机吗?因为量子计算可以指数级地提升运算速度,但答案是否定的,因为即使我们建造出能够完全纠错的量子计算机,它也无法加速所有的计算问题,只能加速一部分。

  • 关键词浏览:
  • 量子力学
  • 2022第九季 SIUF国际超模大赛总决赛在深圳举行
  • 8月12日晚,“心衣天使内衣超模”2022第九季SIUF国际超模大赛总决赛在深圳会展中心举行。当晚,13号选手周家圻夺得冠军,1号选手张珊梦夺得亚军,29号选手褚晓雯夺得季军。...

  • 秦怡去世:百岁百件事,致敬这不凡的美丽人生
  • 2022年1月31日,演员秦怡100周岁的生日。这位承载了几代人记忆的老艺术家,正式从“90后”晋升“00后”行列。...

  • 借“医”行诈国家医保基金,这家取名“民泰”的医院被端了!
  • 如果不是警方找上门,23岁的杨某并不知道,2018年底到2019年7月间,“自己”在四川省达州市宣汉县民泰医院住了五次院,共32天,医保报销12831.5元。...

  • 北京证券交易所来了(财经眼)
  • 9月2日,习近平主席在2021年中国国际服务贸易交易会全球服务贸易峰会上提出“我们将继续支持中小企业创新发展,深化新三板改革,设立北京证券交易所,打造服务创新型中小企业主阵地”。...

  • 选手确诊、丑闻不断,东京奥运会“混乱中”即将开幕
  • 如无意外,23日,东京奥运会将迎来延迟一年后的正式开幕。然而,奥运相关人员确诊病例数仍不断增加。...

  • 刚上市就爆火!“1瓶能顶4张面膜”的玻尿酸气泡水,是智商税还是美颜水?
  • 花点小钱真就能抚平皱纹、抵抗衰老、重返十八?吃着零食喝着水也能变漂亮的口服玻尿酸方法真的靠谱吗?...

  • 部分商家宣称护眼仪能让孩子告别眼镜 专家提醒:真性近视不可逆,科学用眼更重要
  • 随着电子产品越来越普及,电脑、智能手机、平板电脑等电子产品已逐渐成为孩子手中的“掌中宝”。...

  • 四名大学生高铁上抢救婴儿 其中三人来自湖北
  • 昨日,一篇暖文火遍全网——飞驰的列车上,4名医学生成功救回一名被食物卡住呼吸道的婴儿。...

  • 谨防洗手间“伏地魔”!男子洗手间内跪地偷窥,当事女子录下视频
  • 小张拍摄的视频显示,洗手间内一名男子趴伏下身子,头部已经快贴到地面上,尝试从缝隙处偷窥如厕。...

  • 乳房健不健康,5点就可判断!女人别太晚知道
  • 说到妇科疾病,必然逃不掉的是乳腺疾病,不管已婚还是未婚,女人都有可能被乳腺疾病盯上。...

    特别推荐